Identifying marker genes in transcription profiling data using a mixture of feature relevance experts.
نویسندگان
چکیده
Transcription profiling experiments permit the expression levels of many genes to be measured simultaneously. Given profiling data from two types of samples, genes that most distinguish the samples (marker genes) are good candidates for subsequent in-depth experimental studies and developing decision support systems for diagnosis, prognosis, and monitoring. This work proposes a mixture of feature relevance experts as a method for identifying marker genes and illustrates the idea using published data from samples labeled as acute lymphoblastic and myeloid leukemia (ALL, AML). A feature relevance expert implements an algorithm that calculates how well a gene distinguishes samples, reorders genes according to this relevance measure, and uses a supervised learning method [here, support vector machines (SVMs)] to determine the generalization performances of different nested gene subsets. The mixture of three feature relevance experts examined implement two existing and one novel feature relevance measures. For each expert, a gene subset consisting of the top 50 genes distinguished ALL from AML samples as completely as all 7,070 genes. The 125 genes at the union of the top 50s are plausible markers for a prototype decision support system. Chromosomal aberration and other data support the prediction that the three genes at the intersection of the top 50s, cystatin C, azurocidin, and adipsin, are good targets for investigating the basic biology of ALL/AML. The same data were employed to identify markers that distinguish samples based on their labels of T cell/B cell, peripheral blood/bone marrow, and male/female. Selenoprotein W may discriminate T cells from B cells. Results from analysis of transcription profiling data from tumor/nontumor colon adenocarcinoma samples support the general utility of the aforementioned approach. Theoretical issues such as choosing SVM kernels and their parameters, training and evaluating feature relevance experts, and the impact of potentially mislabeled samples on marker identification (feature selection) are discussed.
منابع مشابه
Gene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining
Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...
متن کاملSemi-supervised learning via penalized mixture model with application to microarray sample classification
MOTIVATION It is biologically interesting to address whether human blood outgrowth endothelial cells (BOECs) belong to or are closer to large vessel endothelial cells (LVECs) or microvascular endothelial cells (MVECs) based on global expression profiling. An earlier analysis using a hierarchical clustering and a small set of genes suggested that BOECs seemed to be closer to MVECs. By taking adv...
متن کاملUsing the Protein-protein Interaction Network to Identifying the Biomarkers in Evolution of the Oocyte
Background Oocyte maturity includes nuclear and cytoplasmic maturity, both of which are important for embryo fertilization. The development of oocyte is not limited to the period of follicular growth, and starts from the embryonic period and continues throughout life. In this study, for the purpose of evaluating the effect of the FSH hormone on the expression of genes, GEO access codes for this...
متن کاملThe Application of a Non-Radioactive DD-AFLP Method for Profiling of Aeluropus lagopoides Differentially Expressed Transcripts under Salinity or Drought Conditions
Aeluropus lagopoides is a salt and drought tolerant grass from Poaceae family, distributed widely in arid regions. There is almost no information about the genetics or genome of this close relative of wheat that stands harsh conditions of deserts. Differential Display Amplified fragment length polymorphism (DD-AFLP) led to the improvement of a non-radioactive method for which many parameters we...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 5 2 شماره
صفحات -
تاریخ انتشار 2001